skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Andreae, Meinrat O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. Ice crystal submicron structures have a large impact on the opticalproperties of cirrus clouds and consequently on their radiative effect.Although there is growing evidence that atmospheric ice crystals are rarelypristine, direct in situ observations of the degree of ice crystal complexityare largely missing. Here we show a comprehensive in situ data set of icecrystal complexity coupled with measurements of the cloud angular scatteringfunctions collected during a number of observational airborne campaigns atdiverse geographical locations. Our results demonstrate that an overwhelmingfraction (between 61 % and 81 %) of atmospheric ice crystals sampledin the different regions contain mesoscopic deformations and, as aconsequence, a similar flat and featureless angular scattering function isobserved. A comparison between the measurements and a database of opticalparticle properties showed that severely roughened hexagonal aggregatesoptimally represent the measurements in the observed angular range. Based onthis optical model, a new parameterization of the cloud bulk asymmetry factorwas introduced and its effects were tested in a global climate model. Themodelling results suggest that, due to ice crystal complexity, ice-containingclouds can induce an additional short-wave cooling effect of−1.12 W m2 on the top-of-the-atmosphere radiative budget that hasnot yet been considered. 
    more » « less
  2. null (Ed.)